## Validation

### Validating models in the real world

Luis Moneda, Data Scientist at Nubank

### About me

#### Academic

- MSc in Computer Science student (IME-USP)
- Bachelor in Computer Engineering (Poli-USP)
- Bachelor in Economics (FEA-USP)

#### Work & activities

- Data Scientist at Nubank (2017 Current)
- Teaching Machine Learning for MBA courses at FIA
- Udacity mentor and project reviewer for data related courses
- Organizer of the Nubank's Machine Learning meetup
- Kaggler (competitions and datasets)
- Twitter and Blog: @lgmoneda and lgmoneda.github.io

### Outline

- 1. Supervised Learning summarized
- 2. ML 101 validation
- 3. Real world supervised learning

There are some code examples at:

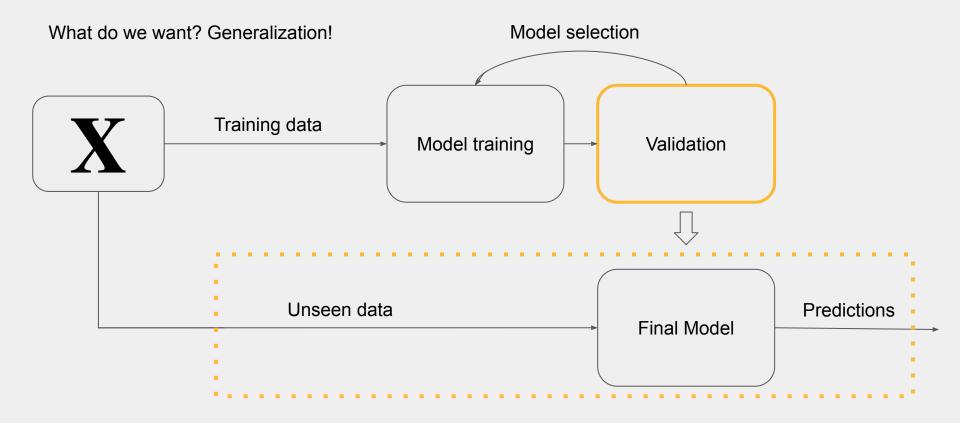
https://github.com/lgmoneda/presentations

### **Supervised Learning summarized**

 $X \xrightarrow{f} Y$ 

- Statistical Learning theory
- Empirical Risk Minimization
- Independently identically distributed (iid)
- We want to predict things nicely, we don't care about what is the f

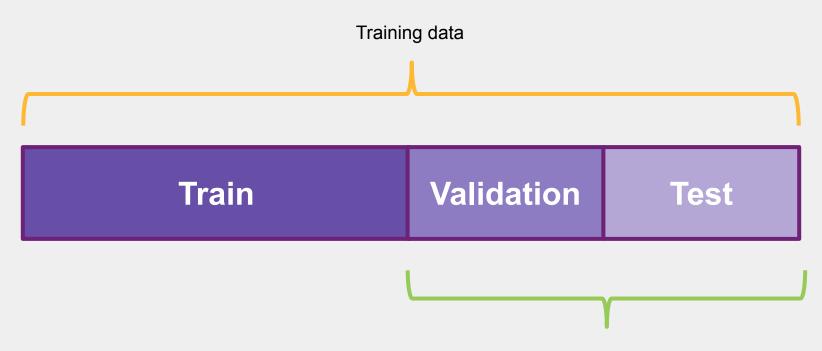
### **ML101 Validation**



### **ML101 Validation: Asses performance**

| Model selection                                   | Generalization power<br>estimation                        |  |
|---------------------------------------------------|-----------------------------------------------------------|--|
| Which model am I going to select?                 | How the selected model is going to perform when deployed? |  |
| We want to <b>order</b> models from worst to best | We want to estimate it assertively                        |  |
| Validation set                                    | Test set                                                  |  |
| Hyper parameters optimization                     | Solution selection, impact estimation                     |  |

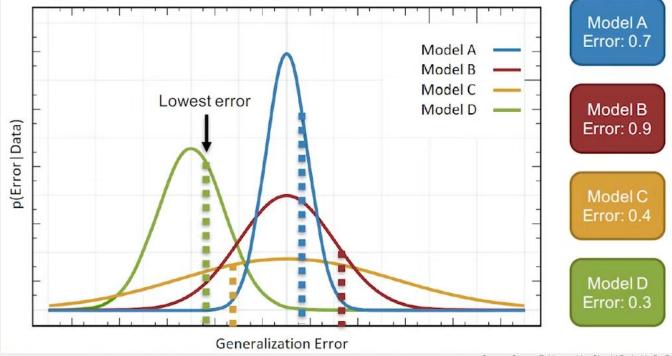
### **ML101 Validation: Simple split**



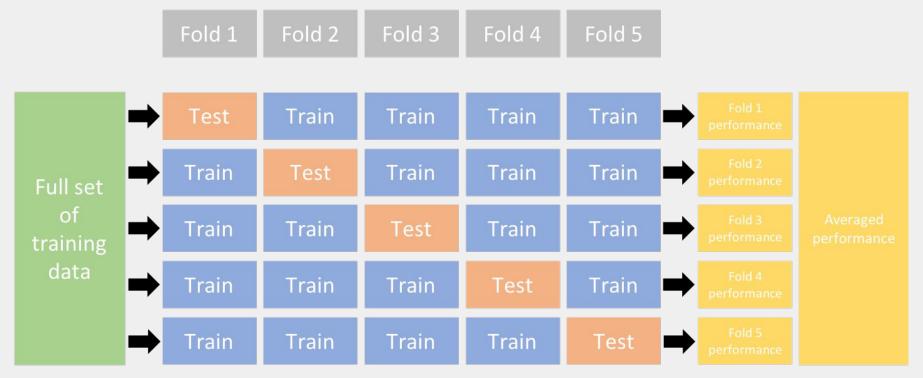
We pretend it's unseen data

### **ML101 Validation**

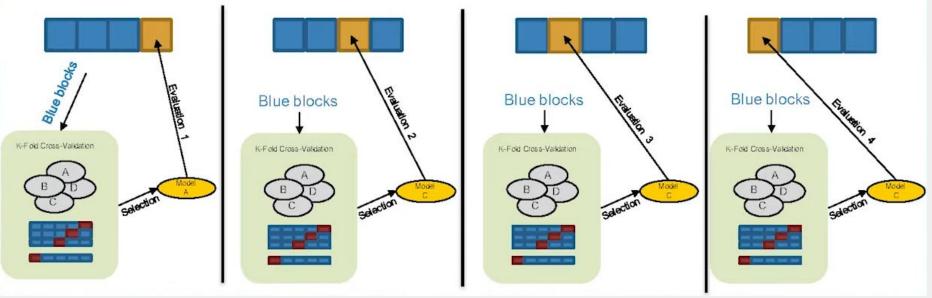
#### **Empirical Error is a Sample**



### **ML101 Validation: K-Fold**



### **ML101 Validation: Nested K-Fold**



Source: Sergey Feldman, You Should Probably Be Doing Nested Cross-Validation | PyData Miami 2019

### **ML101 Validation**

So after your ML101 classes it should look very clear:

We want generalization, i.e. performing well on unseen data, so:

- 1) Leave some data out of the training process and pretend it's unseen;
- 2) Check if the learned model performs well on this unseen data;
- 3) If it performs reasonably, pick it!
- 4) Put in production!



What could possibly go wrong?

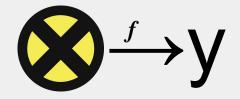
### Then you go to the real world and...



 $X \xrightarrow{f} Y$ 

 $\overset{f}{\longrightarrow} \mathsf{V}$ 

Well, it turns out that in most of the cases the X is mutant!

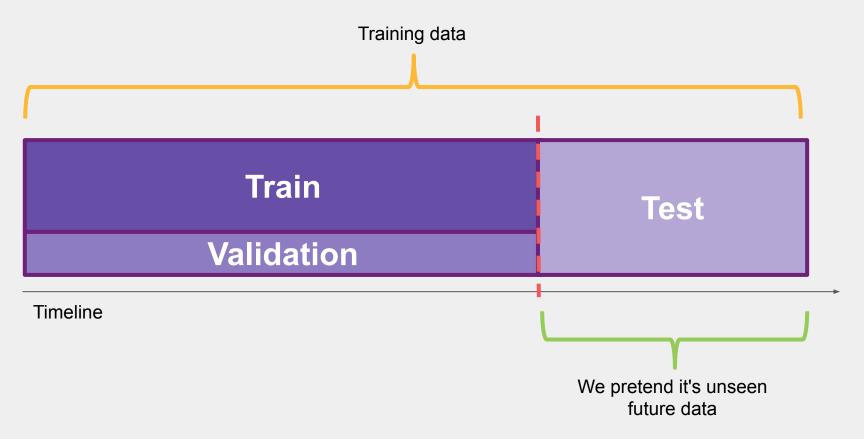


#### Well, it turns out that in most of the cases the X is mutant!

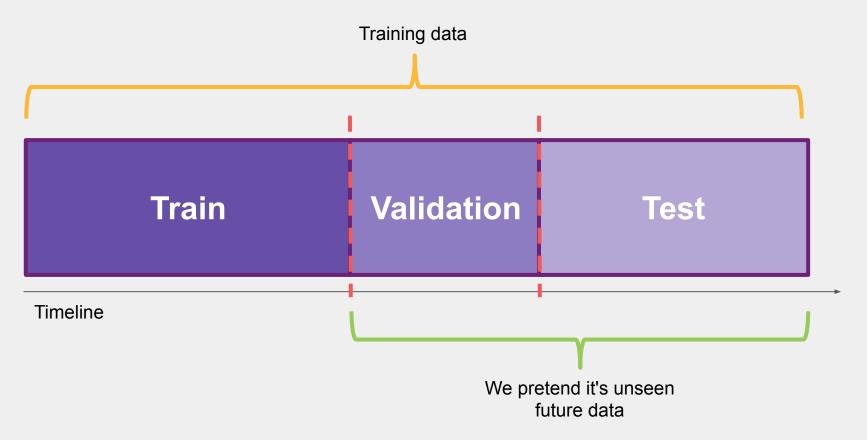
Temporally, spatially... bye bye, i.i.d!

# Random splits imply future data being used to predict past data

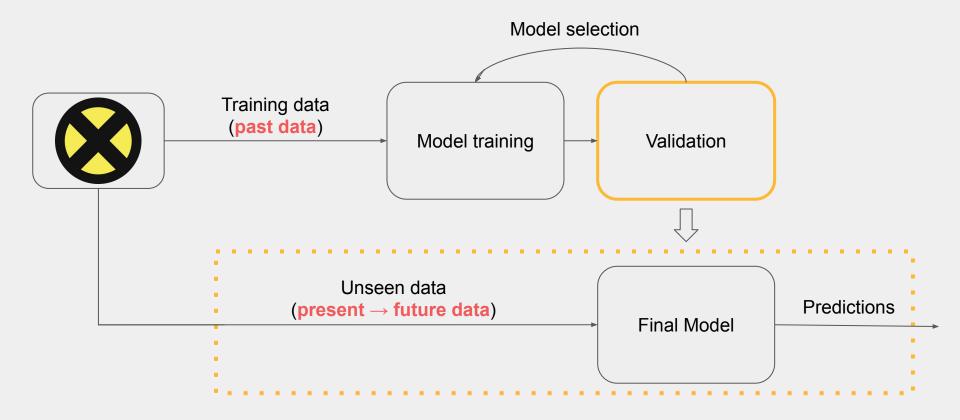
### **Real World Validation: Temporal split**



### **Real World Validation: Temporal split**



### **Real World Validation**



### When temporal validation can help us?

Basically, always!

All datasets have a temporal aspect because they are generated as the time passes by, but time effect depends on the problem.

#### Weak\*

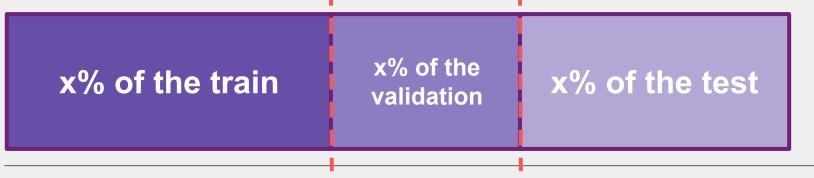
- Images
- Text

#### Strong

- Time series
- Tabular data

### What about the point estimate problem?

### **Real World Validation: Temporal split**

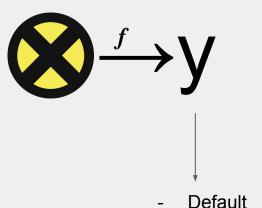


Timeline

#### Small dataset: bootstrap

Enough data: you're fine!

### Is the generalization estimation right now?



Churn

Fraud

### What is default?

Not paying after n days.

#### What is churn?

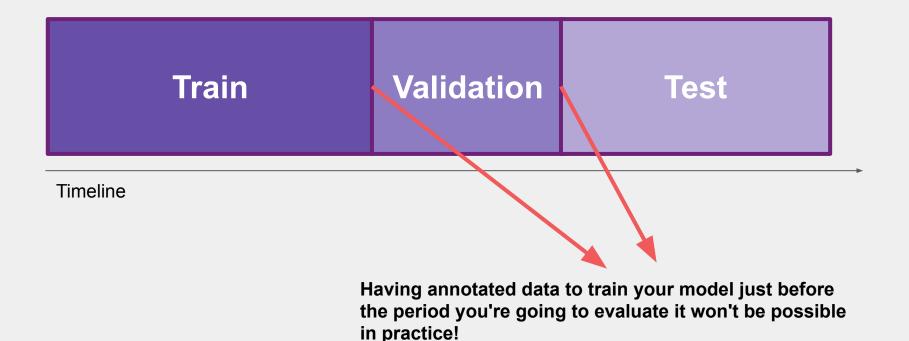
Not using the product for n days.

#### What is fraud?

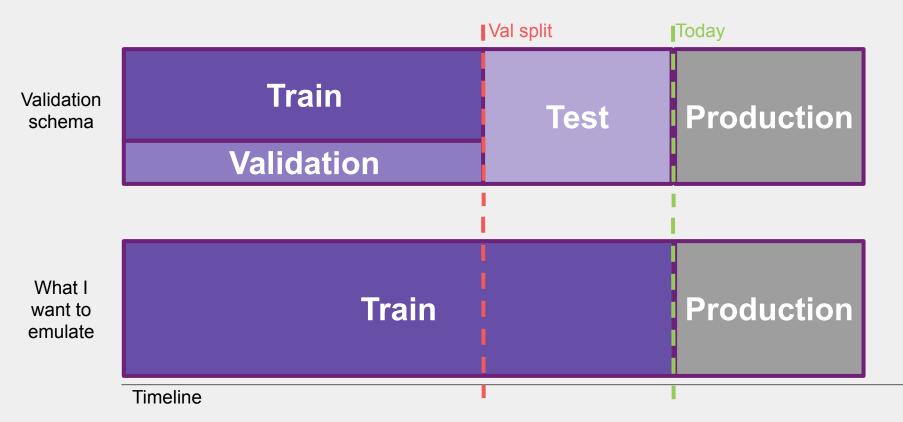
Being reported as fraudulent after n days of the transaction / operation.

All of them involve observing the phenomena in a time frame to finally annotate the example!

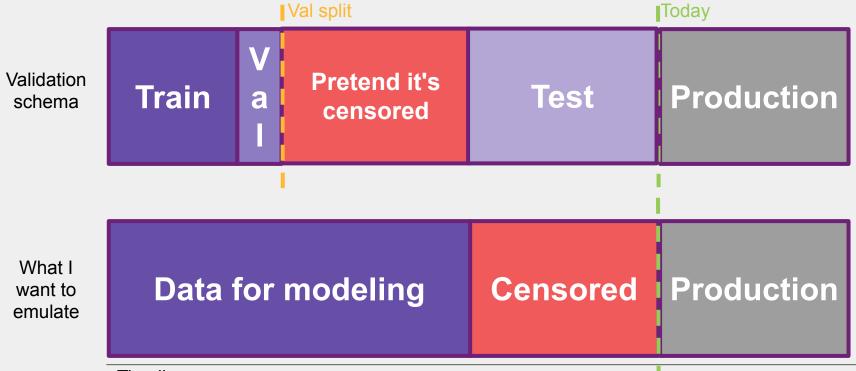
### **Real World Problem: target observation**



### **Real World Problem: target observation**



### **Real World Problem: target observation**



Timeline

### **Prediction gap**

When is it relevant for model selection?

Testing different target definition: churn as an inactive user for 5, 10... 60 days. It will change the censored length.

| Data for modeli   | ng | Censored | Production |
|-------------------|----|----------|------------|
| Data for modeling | С  | ensored  | Production |

So the validation can mimic the production environment and address the trade-off between target stability and fewer and older training data.

Examples: churn, default

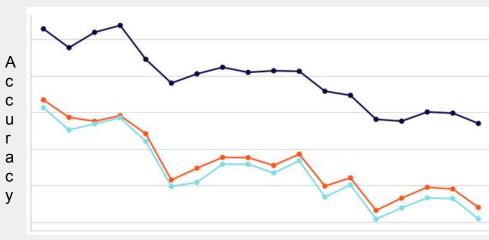
### Model degradation

### **Model degradation**

#### When is it relevant?

More complex models degrade faster!

So it impacts model selection.



A real model performance by week

Weeks

## **Ready to rock!**

Ok, let's summarize it:

- Now you know the inherent role of time in every dataset;
- You can design a validation schema that considers the prediction gap;
- When reporting the generalization power you consider model degradation and the time frame your model will operate.



# Now you pick a company's problem and ask how they solve it currently.

### "We have some business rules to decide what to do: we apply some IFs, ELSE... and..."



### "Oh, do you think you can improve it?"

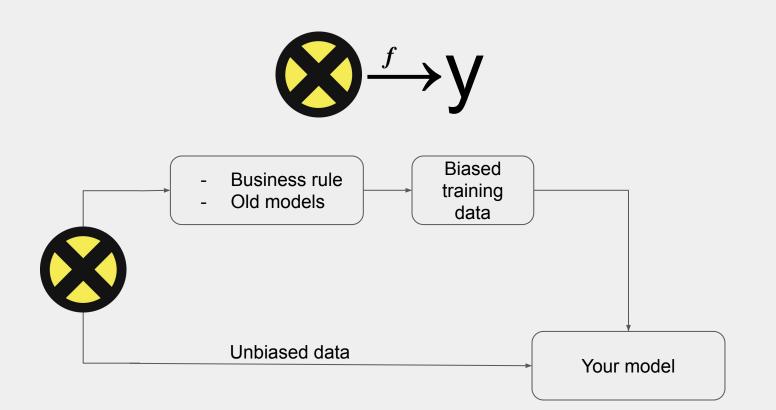


- 1) Get the historical data
- 2) Train a model on it
- 3) Validate using out of fold data
- 4) Get rid of all the crap business rules
- 5) Deploy your awesome ML model

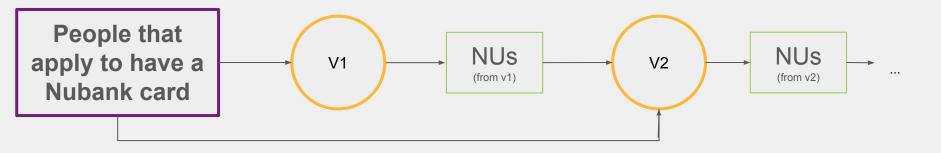
## But then...



## Old policies and models bias



## Old policies and models bias example



# How can I evaluate V2 if I can't observe the outcome for people rejected by V1?

## **Counterfactual evaluation and rejected inference**

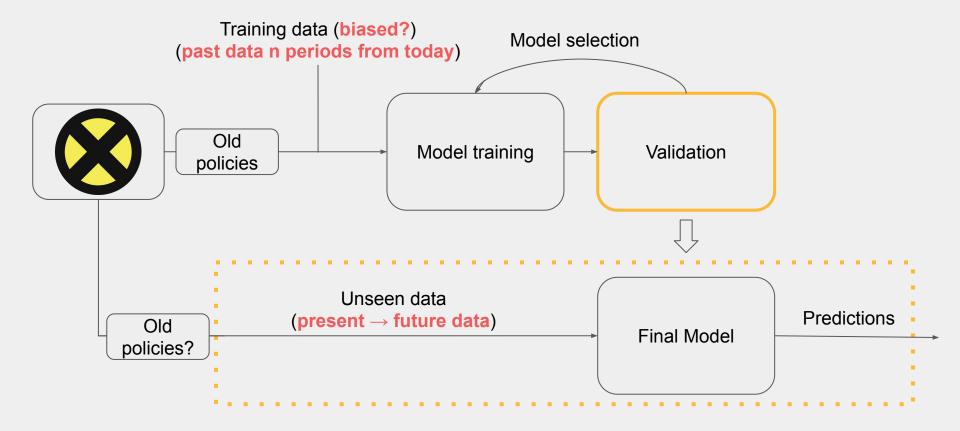
#### **Counterfactual evaluation**

In production, disobey your model decision with a probability p, then you can oversample them to evaluate the next model version.

#### **Rejected Inference**

Find a way to make an inference about the outcome from the examples you can't observe the ground truth.

## **Real World Validation**



In a company, data science joins business and engineering to deliver value.



## Engineering

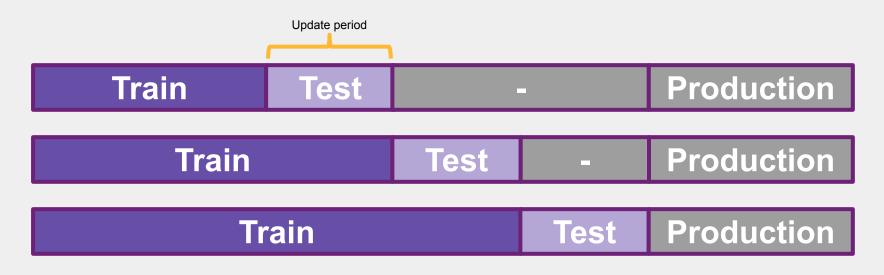
#### Engineering

- How often can I update my model?
- Is there any time constraint?

So the production environment we want to validate may become something like "what is the best model considering it can be updated every N periods?"

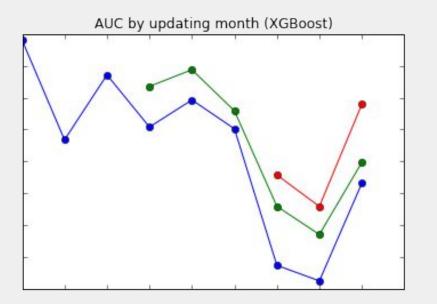
## **Real World Validation - Engineering**

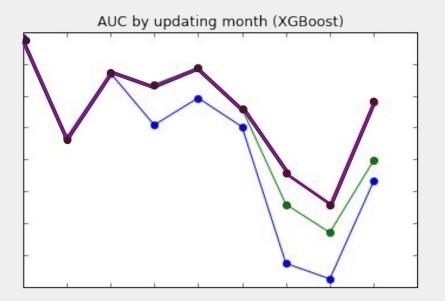
#### Validate considering update



Timeline

## **RW Validation - Engineering example**





## **Business**

#### **Business**

- A lot of things can change the X distribution:
  - Marketing
  - New products
  - Communication
  - Growth/maturity
- You want to produce meaningful/profitable/useful predictions
- Update and running time constraints also
- Model objective

## **Business: how does it impact validation?**

#### **Business**

- A lot of things can change the X distribution

You can't do anything at validation time for future changes, but **monitor**! You shipped something to score over X, but people won't care about, while you should.

- You want to produce meaningful/profitable/useful predictions Validate considering business value. Split by important features/groups, analyze past events that changed the X distribution.
  - Update and time constraints also:

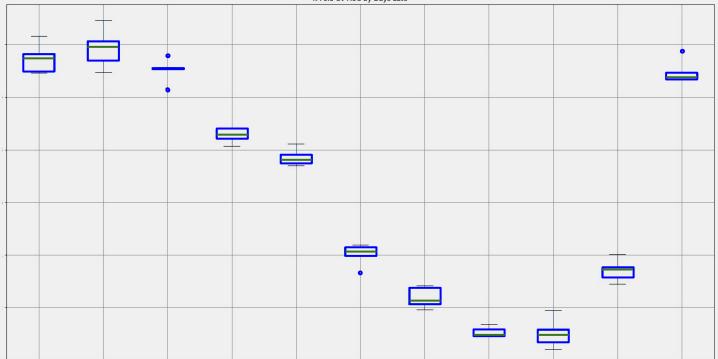
Consider model performance x delay to take decisions! Calculate the monetary trade-off between them.

- Model objective

If you know how your data was collected and how your model is going to be applied, it can be a **leverage** instead of a trap.

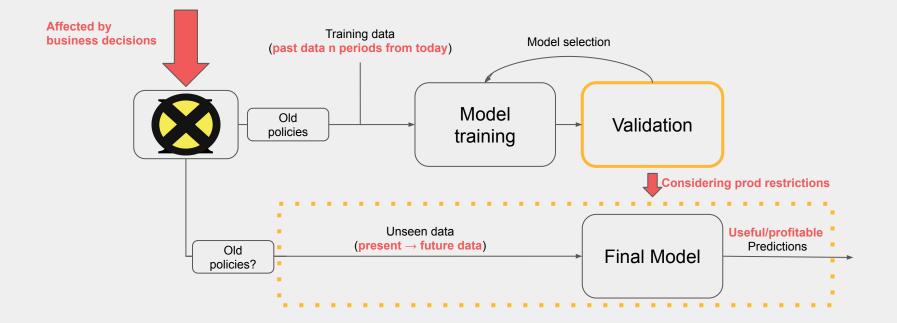
## **Real World Validation - Deeper look**

Boxplot grouped by split\_evaluator\_days\_late\_bins



K-Fold CV AUC by Days Late

## **Real World Validation**



## "Wait a minute! If I'm not doing any of this, how am I not blowing my company?"



## Well...

| Validation<br>strategy                    | Model Selection                                                                                                                | Generalization power estimation                                                      | Impact                                                                                               |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Mimics<br>application<br>environment      | You choose the best<br>model in terms of<br>predictive power                                                                   | Provides the best<br>estimation about the<br>model performance<br>when in production | You're doing great!                                                                                  |
| It doesn't mimic,<br>but it's fair        | A wrong but fair<br>comparison has a<br>good chance to keep<br>model ordering for<br>the selection (include<br>current model!) | Bad estimation,<br>probably<br>overestimating model<br>performance.                  | Replacing the current<br>solution/model by a worse<br>one.<br>Adopting a not profitable<br>solution. |
| It doesn't mimic,<br>unfair<br>comparison | Picking a sub optimal model                                                                                                    | Bad estimation                                                                       | Same as above, but<br>probably with a worse model                                                    |

# Is it possible at all to replicate prod environment for validation?

## So at the end...



Train: A nice and invariant distribution I have a reasonable random sample.

Apply: In an unseen random sample.

**Train:** Old, far from prediction time, biased by old policies and models, unequally distributed in the features you care about.

Apply: In an unseen future data I'm not sure about how it's going to change accordingly to time and other business decisions.

## Takeaways

It's hard to define a recipe for validation, but keep in mind the general idea of "mimic the production environment / application case":

- Use a temporal split
- Observe the model degradation in time
- Consider the censored period to observe the target
- Do a internal research about how the data was collected to be aware of all the old policies and models and its bias
- Know **how/when** your model is going to be applied
- Consider all the engineering restrictions and possibilities
- Think about the important business aspects to do a deeper validation



## Takeaways

It's hard to define a recipe for validation, but keep in mind the general idea of "mimic the production environment / application case":

- Use a temporal split
- Observe the model degradation in time
- Consider the **censored period** to observe the target
- Do a internal research about how the data was collected to be aware of all the old policies and models and its bias
- Know how/when your model is going to be applied
- Consider all the engineering restrictions and possibilities
- Think about the important business aspects to do a deeper validation
- Be aware of **population shifts** caused by business decisions

# **Questions?**



@lgmoneda



lg.moneda@gmail.com



http://lgmoneda.github.io/